Nonlinear Approach to Brain Signal Modeling

نویسندگان

  • Tugce Balli
  • Ramaswamy Palaniappan
چکیده

Biological signal is a common term used for time series measurements that are obtained from biological mechanisms and basically represent some form of energy produced by the biological mechanisms. Examples of such signals are electroencephalogram (EEG), which is the electrical activity of brain recorded by electrodes placed on the scalp; electrocardiogram (ECG), which is electrical activity of heart recorded from chest, and electromyogram (EMG), which is recorded from skin as electrical activity generated by skeletal muscles (Akay, 2000). Nowadays, biological signals such as EEG and ECG are analysed extensively for diagnosing conditions like cardiac arrhythmias in the case of ECG and epilepsy, memory impairments, and sleep disorders in case of EEG. Apart from clinical diagnostic purposes, in recent years there have been many developments for utilising EEG for brain computer interface (BCI) designs (Vaughan & Wolpaw, 2006). The field of signal processing provides many methods for analysis of biological signals. One of the most important steps in biological signal processing is the extraction of features from the signals. The assessment of such information can give further insights to the functioning of the biological system. The selection of proper methods and algorithms for feature extraction (i.e., linear/nonlinear methods) are current challenges in the design and application of real time biological signal analysis systems. Traditionally, linear methods are used for the analysis of biological signals (mostly in analysis of EEG). Although the conventional linear analysis methods simplify the implementation, they can only give an approximation to the underlying properties of the signal when the signal is in fact nonlinear. Because of this, there has been an increasing interest for utilising nonlinear analysis techniques in order to obtain a better characterisation of the biological signals. This chapter will lay the backgrounds to linear and nonlinear modeling of EEG signals, and propose a novel nonlinear model based on exponential autoregressive (EAR) process, which proves to be superior to conventional linear modeling techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach

There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...

متن کامل

A New Nonlinear Autoregressive Exogenous (NARX)-Based Intra-Spinal Stimulation Approach to Decode Brain Electrical Activity for Restoration of Leg Movement in Spinally-Injured Rabbits

This study aims at investigation of stimulation by using intra-spinal signals decoded from electrocorticography (ECoG) assessments to restore the movements of the leg in an animal model of spinal cord injury (SCI). The present work comprised of three steps. First, ECoG signals and the associated leg joint changes (hip, knee, and ankle) in sedated healthy rabbits were recorded in different trial...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

A New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network

 Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...

متن کامل

A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal

The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...

متن کامل

A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal

The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008